Grouping and Pivoting


In this section, we will answer the question:

What were the most popular male and female names in each year?

Here’s the Baby Names dataset once again:

import pandas as pd
baby = pd.read_csv('babynames.csv')
baby.head()
# the .head() method outputs the first five rows of the DataFrame
Name Sex Count Year
0 Mary F 9217 1884
1 Anna F 3860 1884
2 Emma F 2587 1884
3 Elizabeth F 2549 1884
4 Minnie F 2243 1884

Breaking the Problem Down

We decompose this problem into simpler table manipulations.

  1. Group the baby DataFrame by ‘Year’ and ‘Sex’.

  2. For each group, compute the most popular name.

Recognizing which operation is needed for each problem is sometimes tricky. Usually, a convoluted series of steps will signal to you that there might be a simpler way to express what you want. If we didn’t immediately recognize that we needed to group, for example, we might write steps like the following:

  1. Loop through each unique year.

  2. For each year, loop through each unique sex.

  3. For each unique year and sex, find the most common name.

Note

There is almost always a better alternative to looping over a pandas DataFrame. In particular, looping over unique values of a DataFrame should usually be replaced with a group.

Grouping


To group in pandas. we use the .groupby() method.

baby.groupby('Year')
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7ff990dd36d0>

.groupby() returns a strange-looking DataFrameGroupBy object. We can call .agg() on this object with an aggregation function in order to get a familiar output:

# The aggregation function takes in a series of values for each group
# and outputs a single value
def length(series):
    return len(series)

# Count up number of values for each year. This is equivalent to
# counting the number of rows where each year appears.
baby.groupby('Year').agg(length)
Name Sex Count
Year
1880 2000 2000 2000
1881 1935 1935 1935
1882 2127 2127 2127
1883 2084 2084 2084
1884 2297 2297 2297
... ... ... ...
2012 33715 33715 33715
2013 33253 33253 33253
2014 33206 33206 33206
2015 33063 33063 33063
2016 32868 32868 32868

137 rows × 3 columns

You might notice that the length function simply calls the len function, so we can simplify the code above.

baby.groupby('Year').agg(len)
Name Sex Count
Year
1880 2000 2000 2000
1881 1935 1935 1935
1882 2127 2127 2127
1883 2084 2084 2084
1884 2297 2297 2297
... ... ... ...
2012 33715 33715 33715
2013 33253 33253 33253
2014 33206 33206 33206
2015 33063 33063 33063
2016 32868 32868 32868

137 rows × 3 columns

A further shorthand to accomplish the same result would be by using .count() method as our aggregating function. Pandas has shorthands for common aggregation functions, including count, sum, and mean.

baby.groupby('Year').count()
Name Sex Count
Year
1880 2000 2000 2000
1881 1935 1935 1935
1882 2127 2127 2127
1883 2084 2084 2084
1884 2297 2297 2297
... ... ... ...
2012 33715 33715 33715
2013 33253 33253 33253
2014 33206 33206 33206
2015 33063 33063 33063
2016 32868 32868 32868

137 rows × 3 columns

The aggregation is applied to each column of the DataFrame, producing redundant information. We can restrict the output columns by slicing before grouping.

year_rows = baby[['Year', 'Count']].groupby('Year').agg(len)
year_rows
Count
Year
1880 2000
1881 1935
1882 2127
1883 2084
1884 2297
... ...
2012 33715
2013 33253
2014 33206
2015 33063
2016 32868

137 rows × 1 columns

Note that the index of the resulting DataFrame now contains the unique years, so we can slice subsets of years using .loc as before:

# Every twentieth year starting at 1880
year_rows.loc[1880:2016:20, :]
Count
Year
1880 2000
1900 3730
1920 10755
1940 8961
1960 11924
1980 19440
2000 29764

Grouping on Multiple Columns


We can group on multiple columns to get groups based on unique pairs of values. To do this, pass in a list of column labels into .groupby().

grouped_counts = baby.groupby(['Year', 'Sex']).sum()
grouped_counts
Count
Year Sex
1880 F 90992
M 110491
1881 F 91953
M 100743
1882 F 107847
... ... ...
2014 M 1913434
2015 F 1776538
M 1907211
2016 F 1756647
M 1880674

274 rows × 1 columns

The code above computes the total number of babies born for each year and sex. We can now use grouping by multiple columns to compute the most popular names for each year and sex. Since the data are already sorted in descending order of Count for each year and sex, we can define an aggregation function that returns the first value in each series. (If the data weren’t sorted, we can call sort_values() first.)

# The most popular name is simply the first one that appears in the series
def most_popular(series):
    return series.iloc[0]

baby_pop = baby.groupby(['Year', 'Sex']).agg(most_popular)
baby_pop
Name Count
Year Sex
1880 F Mary 7065
M John 9655
1881 F Mary 6919
M John 8769
1882 F Mary 8148
... ... ... ...
2014 M Noah 19263
2015 F Emma 20415
M Noah 19594
2016 F Emma 19414
M Noah 19015

274 rows × 2 columns

Notice that grouping by multiple columns results in multiple labels for each row. This is called a “multilevel index” and is tricky to work with. The important thing to know is that .loc takes in a tuple for the row index instead of a single value:

baby_pop.loc[(2000, 'F'), 'Name']
'Emily'

But .iloc behaves the same as usual since it uses indices instead of labels:

baby_pop.iloc[10:15, :]
Name Count
Year Sex
1885 F Mary 9128
M John 8756
1886 F Mary 9889
M John 9026
1887 F Mary 9888

Pivoting


If you group by two columns, you can often use pivot to present your data in a more convenient format. Using a pivot lets you use one set of grouped labels as the columns of the resulting table.

To pivot, use the pd.pivot_table() function.

pd.pivot_table(baby,
               index='Year',         # Index for rows
               columns='Sex',        # Columns
               values='Name',        # Values in table
               aggfunc=most_popular) # Aggregation function
Sex F M
Year
1880 Mary John
1881 Mary John
1882 Mary John
1883 Mary John
1884 Mary John
... ... ...
2012 Sophia Jacob
2013 Sophia Noah
2014 Emma Noah
2015 Emma Noah
2016 Emma Noah

137 rows × 2 columns

Compare this result to the baby_pop table that we computed using .groupby(). We can see that the Sex index in baby_pop became the columns of the pivot table.

baby_pop
Name Count
Year Sex
1880 F Mary 7065
M John 9655
1881 F Mary 6919
... ... ... ...
2015 M Noah 19594
2016 F Emma 19414
M Noah 19015

274 rows × 2 columns

Summary


We now have the most popular baby names for each sex and year in our dataset and learned to express the following operations in pandas:

Operation

pandas

Group

df.groupby(label)

Group by multiple columns

df.groupby([label1, label2])

Group and aggregate

df.groupby(label).agg(func)

Pivot

pd.pivot_table()